6. Aufgabenblatt zur Vorlesung Arithmetik

Abgabe bis Mo., 9.06., 12 Uhr, in: Vorlesung / Briefkasten Geb. I, Erdgeschoss.

1) "Übersetzen" Sie schriftlich unter Verwendung der Division mit Rest bzw. des Hornerschemas:

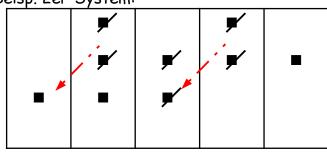
2a) In der Tabelle wird die Zahl in Zelle B1 (=222) in ein Stellenwertsystem umgerechnet,

dessen Basis in Zelle A1 steht (=5). Dazu wird fortlaufend Division mit Rest angewandt. Der erste Quotient steht in B2, der zugehörige Rest daneben in C2 (222:5 = 44 R 2). Die weiteren Quotienten und Reste folgen in den Zeilen darunter (44:5 = 8 R 4, ...). Welche Einträge sind dafür, bezogen auf LibreOffice Calc, in B2 und C2 erforderlich - insbesondere, wenn man sie auf die Zellen darunter übertragen möchte?

	Α	В	С
1	5	222	
2		44	2
3		8	4
4		1	3
5		0	1

2b) In den Zellen B1 bis E1 stehen die Ziffern der Zahl eines Stellenwertsystems, dessen Basis in Zelle A1 angegeben ist (1342₅). Darunter folgt die Umrechnung ins Dezimalsystem nach dem Hornerschema.

	Α	В	С	D	E
1	5	1	3	4	2
2			5	40	220
3		1	8	44	222


Welche Einträge sind dafür, bezogen auf LibreOffice Calc, in B3 und C2 erforderlich - insbesondere, wenn man sie auf die Zellen rechts daneben übertragen möchte?

3) Addieren Sie an der Stellentafel und notieren Sie dementsprechend die Rechnung:

<u> 2er-System:</u>	<u>8er-System:</u>	<u>4×5er-System:</u>
1010 + 1111 =	777 + 1 =	33;33 + 3;33 =
111 + 111 =	12345 + 67 =	34;34 + 34;34 =
1111 + 1 =		

$$16er$$
-System: $6 \times 10er$ -System: $9ABC$ + DEF = $55;55$ + $5;55$ = 10029 + FE2 = $59;59$ + $59;59$ =

Beisp. 2er-System:

- 4) Im Zehnersystem gilt $21 = 2 \cdot 10^1 + 1 \cdot 10^0$, was man an der Stellentafel z.B. wie in der Grafik veranschaulicht.
 - a) Erläutern Sie grafisch entsprechend die Zahl 12213.
 - b) Ist 1234560 eine Zahl in einem Stellenwertsystem zur Basis b ($b \ge 7$), dann gilt:

1234560 =
$$? \cdot b^0 + ? \cdot b^1 + \dots + ? \cdot b^2 + ? \cdot b^2 + ? \cdot b^2 = \sum_{i=?}^{?} a_i \cdot b^i \text{ mit } a_0 = ?, a_1 = ?, ???, a_2 = ?$$

- c) Erklären Sie mit dem Entbündeln an der Stellentafel, weshalb die k-te Stelle den Wert b^{k-1} hat und nicht b^k .
- 5) Man kann die geometrische Reihe $3^0+3^1+3^2+3^3$ als die Zahl 1111_3 im 3er-System auffassen. Multipliziert man sie mit 2 und addiert anschließend 1, so ist das Ergebnis 10000_3 ($=3^4$).

$$3^{0}+3^{1}+3^{2}+3^{3}=1111_{3} ; | \cdot 2$$

$$2\cdot(3^{0}+3^{1}+3^{2}+3^{3})=2222_{3} ; | +1$$

$$2\cdot(3^{0}+3^{1}+3^{2}+3^{3})+1=10000_{3}$$

$$=1\cdot3^{4}$$

Also ist
$$2 \cdot (3^0 + 3^1 + 3^2 + 3^3) + 1 = 3^4$$
 oder $3^0 + 3^1 + 3^2 + 3^3 = \frac{3^4 - 1}{2}$.

- a) Zeigen Sie ebenso, dass $7^0+7^1+7^2+7^3+7^4=\frac{7^5-1}{6}$ ist, und
- b) verallgemeinern Sie diesen Gedanken auf geometrische Reihen $7^0+7^1+7^2+...+7^n$. Zeigen Sie also, dass $7^0+7^1+7^2+...+7^n=\frac{7^{n+1}-1}{6}$ ist.